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The formulas of the preceding section hence remain valid ; it is only necessary to 

assume K(-- “/,) = 1 therein. For example, evaluating the functions 

&**(-2) = 2, K+(- 2) = h’lt, c = - T[4 J&]-1 

actor ding to (1.46). (2.1),(1.47), and substituting them into (1.49), we obtain the known 
formula for the indentation of a flat circular die into an elastic half-space 

u,, = T(1 - a) [4n G]-1 

The normal stress distribution under the die is also found easily from (1.44) 

1 
c 

Tr-Y-3 dv T 
5 

r--y-3 &, 

‘~=-~~ 4 Jf;K+(,,) =siL cos (‘/zfiv) r (2 + l/ZV) r (l/z. - ‘/ZV) 
= 

In conclusion, the author is grateful to Ia. S. Ufliand for discussing the research, and 
for useful remarks. 
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Some torsional problems are investigated which can be solved in ellipsoidal coordinates 

using the Mehler-Fock transformation, specially generalized for the case of an incom- 
plete interval. The proof of the relevant inversion formula is given. 

1. Formulation of the problem and ito general 8olutfon. Let us 
consider the torsion of a two-sheeted hyperboloid of revolution, truncated at its top by 

an ellipsoidal surface. In degenerate ellipsoidal coordinates 
r = c sh CL sin fl, z = c chu cos j3 (1.1) 

the body which we consider occupies the region delineated by a, < a < 00 ,O < fi < PO* 
If the single component of an elastic displacement v 3 u,(aifi) is taken as the basic 

unknown function, the problem is reduced to solving the equation p] 
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A~_~-3~=0 (1.2) 

with certain boundary conditions on the surfaces a = a,and $ = PO. 

In the case when these conditions are uniform for a = a,, two classes of problems 

have to be considered: 
a) cross section a = a, is fixed, i. e. 

U(% B) = 0 

b) when a = a,, shear stresses 

do not exist. 

It is assumed that either displacement u or stress 

G sir@ 8 v , 
z B~=---r---- 7 i ) f3p $sm/3 9 IL = c vsbA a + ain* p 

on the surface of the hyperboloid 0 = PO are prescribed. 
Here G is the shear modulus and h is the Lame coefficient. 
These problems can be also formulated in terms of stress function 0 = r2w, where 

Aw - 4r-2W = 0 (1.3) 

In this version function @ itself may be considered known on all those surface regions 
for which the stress is specified ; if the displacements are specified, normal derivative 

of this function may be regarded as known. 

We shall now consider a more general problem which consists of finding the solution 
for the following equation ( * ) : 

Au - m%-2 u = 0, 1 <z. < x < ~30, 0 < fi < PO (i-4) 

x = ch a, x,, = ch a,; m = 0,1,2,... 

with the boundary conditions 

(1.5) 

Separation of variables in (1.4) yields particular solutions of the following form r2] : 

U” (3, P) = [My? 14 + NQ”m (31 P,” (co9 P) (1.6) 
Applying the boundary conditions for a -- a, and allowing for the results obtained in 

[3] we find It%, = c (T) ?/,, (5) P,“’ (cos P) (v = - ‘/L + ir, d >, 0) 

yV = [.4Q,,m (50) + BQ,,“” (xo)] Pym (I) - [4Pyn’ (~0) f W,“l’ (x0)1 a.,“’ (4 (1.7) 

Hence, the solution of the problem is of the following form : 

I( (2, 8) = tq c (.t) y, (x) py’n (cos P) rlr (1.x’) 

t 

Making now use of boundary condition (1. 5) for-0 = PO we obtain an expansion of the 

form 

*) Dirichlet and Neumann problems can be reduced to analogous problems when there 

is no axial symmetry ; similarly the boundary value problems of heat conduction in the 

considered region, etc. 
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from which we have to determine the unknown quantity 

D (z) = C (z) [KPvm (cos PO) - L sin BoP,~’ (cos PO)] (1.20) 

Expansion (1. 9) is a generalization of the Mehler -Fock transformation for the case 
of an incomplete interval and of boundary conditions of the third kind ( l ) . In Sect. 2 

of the present paper we shall prove the following inversion formula (cf. (2.11)): 

(,l.il) 

which provides the final solution of our problem. 

In torsional problems which can be solved by means of function v it is obviously 

necessary to take m = 1,while B = 0 in the case (a) and A = ch a0 cs ch2 a,, B = -1 

in the case (b). 
The problems in which stress function 0 is used correspond to the case when m = 2. 

Let us also note that if the boundary conditions for 01 = a, are inhomogeneous, formula 

(1.11) may be applied to find the solution by the method of integral transformations 
(cf. , for instance, [S]). 

2. Proof of the 
function, defined in the 

1”. Function f(s) 
interval (x0, CC); 

lnverlion formulr. Theorem. L-et f(x)be a specified 
interval (x0, W) and satisfying t‘he forlowing conditions : 
is precise continuous and its variation is bounded in the open 

2”. ) f(x) 1 x-“‘In I E L(x,, ~0) 
Under these conditions the following expansion is valid : 

l/&(l - 0) + f(x + WI = (xg>1, v= --I&+ iT) 

A and B are here real numbers of different signs. 

The following estimates for z > x0 are required to prove the theorem: 

<O(l) ch fizz-“‘Inx (2.2) 

I Q?,,+i, (4 I G ch m I QY,, (4 I + 72 sh JW I PY,z (2) I < 0 (2) ch r~zx-“~ ln z (2.3) 

I y ( “5 ) ) < 0 (1) ch” nzx-“2 In T (2.4) 

These estimates are obtained from the integral representations n] 

l ) Papers [3- 51 dealt with similar expansion series in the case of boundary conditions 
of the first kind. 
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of the relations 

and estimates 
QY' (8 = v&l QYT1 (4 + -,.:: 1 Q,” lx) 

I AQvm (so) + BQ:’ (~0) I d ch xd ($1, f AP,” (zo) + BP:’ {so) I< ch 1~20 (1) 

Let us consider now the integral 

where 

Integral M(T) is a continuous function since the integrand is piecewise continuous with 

respect to 4, continuous with respect to T , and the following majorant estimate applies : 

;P 
3 if(~)~~(~)ldfC~/f(~)1~1~~)S-“‘~~F,d~<~ (2.‘) 
ro Xl 

Using the method developed in [5] it can be shown that 

4 Q,” (~0) + BQvm’ fiol# 0 when Re v > I/? 

We may,therefore, change the order of integration in the iterated integral (2.5) and 
write J (T, I) as 

J(T, a$=(-V$(C)% 5, T)dS (2.8) 
. 
5 

Allowing for the fact that the integrand in (2.9) is even with respect to z , introducing 
a new variable ir = p and taking into account the following relations CJ]: 

we obtain 
11 

G (z, 5, Tf = y& s PQ&~ (4 Y (4) r (‘/a + p - m) 

J~Q;_,,~ @of + BQzzle (20) 
rf~/z+p+m) dp (z)/5) (3.14 

--iT 

iT 

1 

G @,4, ‘0 = x c 

pQ;t_l,, (4;) y,t/, (5) rw+ P-4 dp 

“QE>,z (zo) + BQzx,t‘ @of r (lb + p + m) 

(4 >I) 
, 

-?T 

Since the singularities of function I? (‘/a + p - m) at points p = m - ‘lz, m - ‘/2,.,‘/2 

are cancelled by the zeros of function ~n_,,~~ the integrand in ~$2, 4, 2’) is regular with 
respect to p in half-plane Rep >, 0. Hence, integration over a section of the imaginary 

axis can he replaced by integration (essentially, we apply here the method developed 
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in [8])over ha&circle l’T wherep = ‘Z’&* and 1 g, I< ~/,JL 
Using the asymptotic representations given in (91 for spherical functions when 

IPI”*“, I arg p 19% n 
Q,_x,,Jch@ =(2~)“*e-“[i +-o(lpj-‘)j (2’11) 

P p_i/2 (ch a) =(&i&X), I@” Ii + VchO (I P I-Y1 f feepz 11 + 0 (I p I-l)], 

we can derive, after some calculations, more generalized formulas 

(2.12) Q;_,, 
2 

(ch a) = (-qm pm-‘/’ pa [it- 0 (I P PII 

m-4 
P p_il, (ch at = ;ma (eP”I~+~O(J~I-f)]~i(-~a)me-P”[i+O(~p~-f)J}(2.43) 

Qpm_',,2 (ch a) = s& (-l)“+‘pm+‘~~(2~)‘he-p’ [I + O(I p I-l)] (2.14) 

P’ p-,,,, (ch a) = ah. cpT&e fePs f ’ + m0 (1 P I)-‘)] f i (-l)m+l eePa [f + 0 (I#‘)I) 

Then for x > f, 
(2.15) 

1 f-0” -.----Y 
G ‘x’ ” ‘) - 2Jtl Y’sh a ah r s 

[,-P@-YL (__1)” e-P(a+Y-a,f + 

rT 

+ e-p(a-y) ‘f/c50 (1 p J-1) + e-~@+y-2a0)0 (1 p I-1) + .@‘@+~)o (I p I-l)} dp = 

where 

x=chu, e=chr, xi,=chu,,, k= 
0 whenB=0 

1 when B+O 

7l2 

1 J+ I< 
c 

-hiT 

emThicoErpdqs <G ’ -heT (2.17) 
G i 

h, = a - T, AZ = a + r - 2ao, A, = a + 7 

In the case of 4 > x, i.e. T ) a, it is necessary to change from a to 7 and from r 
to a in (2.16). Hence, (2.8) is then written out as 

J fT, 5) = l--Urn i f (ch 7) sh ‘G (5, 4, T) 27 + 
ao 

(2A6) 

+k-l)m[f(ch~)shyC(z, 5, T)dy=Zr+Zz 

(L 

(LIP) 

We split the integration interval in integral 1% into intervals (a,,, a - 8) and (a - b, a) 
and choose first a sufficiently small 8 and then a sufficiently great 2’. From the Diri- 
chlet theorem, allowing for conditions 1” and 2,‘. we have for T 4 co the following 

expressions : P-S 

$ f (ch 7) ($$“sin;(Z; ‘) dy = o (1) 

% 
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Thus, when 2’ 3 CO I, + l/j(s - 0). In a similar manner it can be shown that 

lim I2 = 1/2 f(r + O)when T 4 00; this proves expansion (2.1). 

3, Example, Let us consider a truncated hyperboloid adhering in the area & = c-0 

to an immobile rigid stamp and subjected to torsion by shear stresses rslp = F(a) applied 
to the surface fl = fi,,. Boundary conditions for the displacement ~(a, 8) have in this case 

the following form: 
a v 

v il=GO = 0, I 
= f (a) = c v 

shh2 a + sin2 PO 

-qrsinp p=B” G sin PO F(x) (3.1) 

The solution of this problem is given by the formula 

v = 1 C (7) P,l (cos p) y,, (z) dz 
0 

(3.2) 

where dn the basis of (1.7), (1.10) and (1.11) 

Y, (4 = Q,’ (20) P;(z) -P,’ (IO) Q,’ (4, v = l/2 + ifi 
03 

(3.3) 

c (z) = 
‘c sin PO th m 

(x2 + l/4) [sin2 Pop:’ (~0s PO) + ~0s POP,’ (~0s PO)] 
c 

f (3) yv (2) sh Q dz (3.4) 
;, 

In particular, when a linear load of intensity p is applied to the circumference a = a*, 
the integral in (3.4) can be calculated and its value is 

qsha’ 
-sin” (cha’) 

The final solution is given by a single quadrature (3.2). 
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The problem which will be considered is as follows. An elastic semi-infinite rod having 
constant cross section F is glued (or welded) to the side of an elastic semi-infinite plate 

X 

&- 

F having thickness h (see Fig.l). At 
an arbitrary distance b from the 
end-face of the rod a unit force is 

applied in the direction of the rod 
axis. The contact shear stress ~~(5) 

and the normal stress cro(l) in an 
arbitrary cross section of the rod 

Fig. 1 are to be found, assuming that the 
rod is not subjected to any bending 

moments (normal contact stress is not taken into account). A similar problem for an 
infinite rod was solved in [1]. The case of a semi-infinite rod was considered in p, 33; 
in @] an approximate solution was given, while in [3] an exact solution was obtained 


